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Abstract-This paper is concerned with the variational formulation of the optimum design of plastic
cylindrical shells with stepwise varying thickness and stiffeners at joints (sections between two contiguous
elements). The optimality criterion is attained by using a variational formulation. The saving achieved by
using stiffeners is shown by means of an example.

I. INTRODUCTION

During recent years, optimal plastic design of cylindrical shells has been studied by several
authors either using variational formulations or on the basis of the static and kinematic
theorems of limit analysis [1-5].

In the present paper, optimality conditions of cylindrical shells with stepwise varying
thickness and stiffeners at joints are obtained by a variational formulation and an application of
these optimality conditions is presented. For the derivation of optimality conditions a similar
approach has been used for plates and beams by one of the authors and his co-workers[6-tO].
The static and kinematic theorems have been used by several authors to the same purpose [11­
16].

It can be outlined from the present study that up to 23% of material can be saved by the
utilization of stiffeners. Other applications are being studied by one of the authors [17].

2. FORMULATION OFTHE PROBLEM

The usual Kirchhoff-Love assumptions of shell theory with small deflections are adopted.
Shell material is assumed to be rigid-perfectly plastic with tensile and compressive yield limits
of the same magnitude.

Let L, R, T denote total length, mid-surface radius and thickness respectively (Fig. t).
Loads are positive in the outward radial direction, no axial load is considered (Fig. 2). The shell.
the loading, as well as the support conditions are axi-symmetric.

A cylindrical coordinate system (r, 8, X) is chosen (Fig. 1). All functions will depend on X
only.

Let the shell be made of n cylindrical elements, each of which has a constant thickness
ri(i =1, 2, ... , n) and length Ii =Xi -+- 1 - Xi' Let a stiffener be at each joint (section separating
two contiguous elements); thus (n - t) stiffeners are considered (Fig. 3).

The positive directions of axial bending moment M, circumferential normal force N,
circumferential bending moment M/h and shear force S are defined in Fig. 2.

The equilibrium equations are[l4]: for the element between Xi and X'_I

M,."+NRi-p=O . t1= '0' .,n

for the stiffener at the ith joint (Fig. 3)

As,.+LRi =0 0 2{,l 1 = , ... ,n

where Ii is an internal hoop force acting on the stiffener cross-section.
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The yield conditions are: for the element between Xi and Xi + 1[14]

F(M;, Ni• T;) sO i = I, ...•n

for the stiffener at the ith joint

Ii :S O'oAi i =2•...•n

where 0'0 denotes tensile yield limit and Ai is the area of stiffener cross-section.
Any thickness Tj will be subjected to technological constraints:

Ti-Tma.sO Tmin-TisO i=l•...•n.
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(2.3)

(2.4)

(2.5)

The specific cost. that is the cost per unit area of the median surface for the shell and per unit
area of cross-section for the stiffeners. will be denoted respectively by y(Ti ) and 8. For the sake
of simplicity it is assumed that y(Tj ) = kTi and 8 = k (k being a positive constant). The shell's
thickness Ti• and the cross-sectional areas Ai for the stiffeners are to be found in such a way
that the structure. subjected to the given load P. is at the verge of plastic collapse and has a
minimum total cost Z. where

(2.6)

In order to complete the problem formulation. static boundary conditions are to be added.

3. OPTIMALITY CRITERION

By applying the Lagrangian multipliers TJi and 6;, which are not sign-restricted. to the
equality constraints (2.1) and (2.2). and the nonnegative multipliers Ai< 11.;, a;, {3i to the inequality
constraints (2.3)-(2.5) respectively. the functional L is thus constructed:

It is assumed that this functional has a saddle point corresponding to

min
Ti.Ai~O

M;,Nj

max
TJ;, 6;

A;, 1Lj, aj, {3i ~ 0

L
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The stationarity conditions for L are necessary for design optimality. Moreover, if the specific
cost function is convex, these conditions are also sufficient[ll].

The stationarity conditions of L with respect to the Lagrangian multipliers provide not only
relations (2.1)-(2.5) but also the equations

AjF(Mj, N" TJ =0 i = 1, ... ,n

IJ-j(Fj - <ToA;) =0 i = 2, ... ,n

(3.2)

(3.3)

(3.4)

If the differentiation with respect to Tj , M" N, is denoted by the respective subscripts, the
stationarity conditions of L with respect to T;, Ai, N" Mi and Ii respectively are as follows

I
x ,+.

k(Xi+ l - X,) + AjF,T, dX + (1:, - (3i =0 i = I, ... ,n
x,

k - <TolJ-j ~O A;(k - <TolJ-;) =0 i = 2, ... ,n

- ~ + AjF,N, =0 i = 1, ... ,n

- 1/;" + AjF,M
i
=0 i = 1, ... ,n

8i+ Ii; =0 i =2, ... ,n.

0.5)

0.6)

(3.7)

(3.8)

(3.9)

It must be pointed out that, in the derivation of Relation (3.8), 1/i has been assumed to be twice
continuously differentiable. The natural boundary conditions at the edges (X = XI = 0, X =

Xn + 1 = L) are

(3.10)

At a free edge M j = M i ' =0, and hence Relation (3.10) does not impose any constraints on TI
and 1/'. At a simply supported edge M j = 0 and 1/ = 0 is required. At a built-in edge there are no
restrictions on M and M': Relation (3.10) requires that TI = TI' = O. These facts suggest that the
Lagrangian mUltiplier 1/ is proportional to the rate of deflection w. Let

ilSj =M j' - M~_, Ei = 1/iM;' - Tli'Mi - Tlj-JM:- , + TI'j-IMi - 1+ 8i(Mj '- M;_,) i =2, ... ,n.
(3.11)

As 1/j and M j are continuous functions, let

Equation (3.11) can then be written as follows

(3.12)

In all cases the product (iii +6;)ilSj is zero because either ilSj = 0 (M' being continuous), or

iii + 6j = O.
If a circle of plastic articulation occurs at X = X;, then the difference TI~-I - Til' will not

vanish, and E j will be reduced to the plastic dissipation in that circle. In this case a given value
is prescribed for bending moment Mi , depending on the assumed plastic yield condition.
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Relations (3.5) are to be modified: either the term E;.T; in the ith equation, or the term E j •T,_, in
the (i - t)th equation is to be added.

With a stiffener at point Xi' t1Si does not vanish and so

ii; + 6, =O.

Substituting Relations (3.9) and (3.13) into (3.6) leads to

1);
k - 0'0 R =0 i = 2, ... ,no

(3.13)

(3.14)

Relation (3.14) is the optimality condition for the stiffeners. In a similar way, by substituting
Relations (3.7) and (3.8) into (3.5) the optimality condition for the shell elements is obtained. By
eliminating k between (3.5) and (3.14) the specific dissipated power in the shell elements is
found to be equal to the specific power in the stiffeners.

4. OPTIMALITY CONDITIONS FOR SANDWICH SHELLS

The hexagonal yield condition (Fig. 4), which is the exact yield condition for sandwich shells
made of Tresca's material, is used. For a solid shell made of either Tresca's or Mises' material,
the hexagonal yield condition represents a safe linear approximation. For a sandwich shell, if H
denotes the thickness of the core and Tj (design variable) the thickness of the sheets, then

denote full plastic hoop force and full plastic bending moment respectively.
The equations of the sides of the hexagonal yield condition are

M;
(a)If+ Nj-2uoTj :50

M
(b)H'- uoTj :50

Mj (c)If - N, - 2uoTi :5 0

M
(d)- -1. - N - 2u T < 0H ' 0 ,-

M·
(e)- H'-uoT;:50

Mi- H +Nj -2uoTj :50. (f)

(4.1)

Differentiation of Relation (4.1) with respect to Ti, Nj, M; and substitution into (3.5), (3.7) and
(3.8) leads respectively to:

(4.2)
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Upper-case indices a to f refer to the corresponding sides of the yield locus. In Relation (4.2)
the terms due to boundary dissipations, if any, are introduced by means of the possible
discontinuities of 1/'. If plastic flow occurs on a side, only the corresponding A is not zero. It
can be noticed that Relations (4.3) express the normality rule.

Let Di denote the specific dissipation in the ith element and D" the specific dissipation in
the stiffener at joint i

(4.5)

From Relations (3.6), (3.14) and (4.2) if (Xi =: (3; =: 0, that is Tmin < Ti < Tmax'

(i) with stiffener at the ith joint

(4.6)

(ii) without stiffener

(4.7)

The optimality conditions for the stiffened sandwich shells are clearly pointed out in this way.

5. APPLICATION

The following example aims on one hand at illustrating the application of optimality
criterion (4.6) and on the other hand at showing that the use of stiffeners provides a saving of
material which may be as much as 23% (Fig. 8).

A simply supported cylindrical sandwich shell is considered with 3 elements, each of which
having a constant thickness (Fig. 8). The principle of the method consists in choosing a plastic
stress profile on the yield hexagon, so that the equations of Relations (4.3), expressing the
normality law, can be integrated. A collapse mechanism is defined in this way, to within some
constants which are calculated from both the optimality conditions (4.6) and the kinematic
boundary conditions.
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With the same stress profile, by substituting Nj from Relation (4.1) into the equilibrium
equation (2.t) and subsequently integrating, moment functions Mj are found to within the
integration constants and the design variables TI and T2, which are calculated from the static
boundary conditions. Let the following dimensionless variables be defined

x
x=­

L'

where Po is a uniform outward pressure applied to the shell. In order to find the optimal
solution, 3 plastic regimes are used. Owing to the symmetry, only half of the shell is considered
(Fig. 8).

(a) In the first solution stiffeners are not considered. A plastic stress profile AlB1 B2 (Fig.
S) is assumed. By integrating Relations (4.3) the following expressions are obtained:

From the optimality conditions of Relations (4.7) and the following kinematic boundary
conditions

it follows that

b - - 2(1- 2x!) sin ax! +2x! cos (a/2) sin ax! +sin 2ax)
2 - 1+ 2xl- hi cos a «(1/2) - XI)

By integrating equilibrium equation (2.1), where plasticity conditions (4.1) have been used, the
following relation is reached

mj(x) =Cj sin ax +d; cos ax +1- t j i =1,2.

N

Fig. 5.
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From static boundary conditions, the constants eil di and ti(i = 1, 2) are calculated

t = 2 cos a ((1 12) - 2xI) - 2 cos aXI- cos a (0/2) - XI) + 2
1 cos a((l/2) - 2x I) - 2cos a«(1/2) - XI) - 2cos aX I +4

t, =2 cos a((l/2) - 2x l ) - 2 cos a((1/2) - XI) - 2 cos ax, + 3
" cos a((l/2)- 2x l )- 2 cos a((1/2)- x,)- 2cos aX I+4'

The solution here above is both kinematically and statically admissible.
As long as 0 < a < 2.25164, it can be verified that the dissipation per unit volume of material

in a hypothetical stiffener is smaller than the (constant) average dissipation per unit volume in
the shell elements. Hence the assumption of vanishing stiffeners is found to be valid, according
to Relation (4.7).

At a = 2.25164 the dissipation of the stiffener at XI = 1/3 becomes equal to the dissipation in
every shell element.

(b) A plastic stress profile AIBIMIM2B2 (Fig. 6) is chosen: assuming the presence of a
stiffener at XI = 1/3, deflections W, and moments mi(i = 1, 2) are obtained

WI(x)=sinax O~x~x*

wlx) '" a~ sin ax + b2 cos ax I
x* ~ X ~;;

Integration constants, design variables and the abscissa x* of the hinge circle, corresponding to
point B2 of the yield hexagon, are calculated from static and kinematic boundary conditions
and optimality conditions of Relation (4.6).

Due to transcendental equations, the solution is found by means of numerical computer
program. The results are shown in Fig. 8. The considered plastic regime is valid for 2.25164 ~
a ~ 2.41587. It is to be emphasized that in this range of a the normality rule is violated at
x = 0.5. Thus, this solution is only statically admissible: upper bounds of hi and h~ are obtained.

N

Fig. (,
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(c) Assuming the presence of a stiffener at x = 1/3 a plastic stress profile AIBIAIA2 (Fig. 7)
is considered. The following optimal deflection and moment fields are obtained

Wl(X) = sin ax
1O<x<­- -6

with

-(1/2) sin (a/3) +2sin (a/6)
Wo = -0-(a""""/3~);';";si~n~(a"7/6~):::"+:..!.co-s"'::(-='a/~6)~-:';:'('::':'I/':7:'"2)

-sin (a/6) cos (a/3) + Wo cos (a/6)
Qo =---'--'-:"-"""""-'-;-"---"---'-'-"-
- sin (a/6)

b = sin (a/6) sin (a/3) - Wosin (a/6)
2 sin (a/6)

h - 1- cos (a/6)
I - 1- (112) cos (aI6)

The considered plastic regime is valid for 2.41587 < a < 6.99335 and the solution is kinematic­
ally and statically admissible. The second element of the shell is in pure membrane state (Fig. 8).

The solutions are to be completed by finding the volume of the stitfeners which is obtained
from the discontinuity of the shear forces

M

-f-+-----:::+------,~~N"...O-N

Fig. 7.
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In order to evaluate the actual volume saving, the sandwich shell of uniform thickness with the
same loading, geometry and supports is now considered. The plastic design is[18)

o:s; a :s; 11' : h == 1- cos (a/2)
1- (1/2) cos (a/2)

a~lT : h==l.

The optimal solution saving with respect to the uniform thickness sandwich shell is depicted in
Fig. 8. It can be easily verified that the maximum saving of about 22.84% is reached from a == 11.

For a > 6.99335 no saving can be obtained with respect to a uniform thickness sandwich shell.

6. CONCLUSIONS

Optimality conditions are useful to obtain optimal analytical solutions, the main difficulty
being to find plastic regimes that fully solve the given problem. However, numerical solutions
can be given by using these optimality conditions[19); other examples will be presented in
Ref. {l7). A saving of about 38% can be reached using optimal sandwich shell which has
continuously varying thickness [4]. Therefore, more than 23% of material is expected to be
saved by using stiffeners, and by subdividing the shell into more elements.
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